TR: Trench Lesson Two Mechanical Advantage Systems

DOMAIN: COGNITIVE / PSYCHOMOTOR

LEVEL OF LEARNING: COMPREHENSION

MATERIALS

IFSTA 7th Edition Fire Service Search and Rescue; High Angle Rescue Techniques, 3rd Edition, by Tom Vines and Steve Hudson, available through Firehouse.com; Delmar Engineering Practical Rope Rescue Systems; laptop computer, multimedia projector, and whiteboard or flipchart, and marking pens; a suitable number of 2" flat or tubular web slings in suggested pre-tied lengths of 5' and 12'; carabiners and body cords; various sizes of single and double sheave pulleys including a prussik minding pulley; various lengths of 6 - 8mm prussik cords with recommended pre-tied lengths of 53" and 65"; commercial rope grab devices such as Gibbs Ascender, Rock Exotica Ascender or equivalent; weighted objects to be lifted; and a suitable number of training lifelines and 25' to 50' body cords to practice rigging mechanical advantage systems.

NFPA 1006, 2013 Edition JPRs

8.2.4 Lift a load

Junior Member Statement:

Junior Member training activities should be supervised by qualified instructors to assure that the cognitive and psychomotor skills are completed in a safe and non-evasive manner. While it is critical that instructors be constantly aware of the capabilities of all students both mentally and physically to complete certain tasks safely and successfully, the instructor should take every opportunity to discuss with departmental leaders and students the maturity and job awareness each participant has for the hazards associated with fire and rescue training.

TERMINAL OBJECTIVE

The Technical Rescuer shall correctly identify, describe and demonstrate the setup, operation and function of compound mechanical advantage systems used during rope rescue incidents.

ENABLING OBJECTIVES

- 1. The Technical Rescuer shall correctly describe in writing the design and purpose of the various types of mechanical advantage systems.
- 2. The Technical Rescuer shall correctly identify and describe in writing the function of various types of rope grab systems when incorporated into a mechanical advantage system.
- 3. The Technical Rescuer, given the appropriate equipment, shall correctly describe and demonstrate rigging various simple mechanical advantage systems with rope grab systems used by the AHJ.
- 4. The Technical Rescuer, given the appropriate equipment, shall correctly describe and demonstrate rigging various compound mechanical advantage systems with rope grab systems used by the AHJ.

TR: Trench Rescue Lesson Two Mechanical Advantage Systems

MOTIVATION

In almost any high or low angle rescue operation manpower will usually be at a premium. Seldom will there be enough personnel to simply raise or lower patients and rescuers by the hand over hand method. An easier method must be incorporated into these operations to ease the strain on personnel, and speed up overall operations. Mechanical advantage systems can provide a solution to this problem by significantly reducing the number of personnel required to raise, lower or tension a system. Since tremendous forces can be generated with mechanical advantage systems, it is imperative that the Technical Rescuer be proficient not only in constructing these systems, but also the Technical Rescuer must possess an understanding of the load capabilities and limitations of the components of these systems.

NOTE: When performing high and low angle application skills at actual sites all personnel should wear appropriate PPE and use a training mannequin to simulate a patient. If a student is used as a patient, make sure to adhere to all safety precautions including the use of a back-up safety line.

NOTE: When tensioning any mechanical advantage system great care must be exercised to keep the applied forces within the rated capacity of the system components.

PRESENTATION

ENABLING OBJECTIVE #1

The Technical Rescuer shall correctly describe in writing the

design and purpose of the various types of mechanical advantage systems.

- 1. Discuss the general considerations for rescue hauling systems.
 - a) When speed is needed, a simple system may be the best choice for performing a quick and safe operation.
 - b) If lack of personnel is an issue, a higher mechanical advantage may be needed to move the load.
 - c) If only a small amount of gear is available, a simple mechanical advantage system is recommended.
 - d) If the hauling area is cluttered, the potential is high for the system to become snagged.
 - e) If the load is light, use a low ratio mechanical advantage system.
 - f) If the load is heavy, use a high ratio mechanical advantage system.
- 2. Discuss ways of reducing friction in the hauling system.
 - a) Edge rollers.
 - b) Directional systems.
 - c) Reposition the haul system.
 - d) Portable anchors, A-Frames and Tripods.
- 3. Discuss the purpose of a mechanical advantage hauling system.
 - a) It makes lifting a rescue load easier.
 - b) It makes the lifting operation much safer.
- 4. Discuss how to calculate mechanical advantages.
 - a) The simplest hauling system is a direct pull. A direct pull system is one in which the required pulling force exerted by the rescuers is equal to the load. An example would be a 1:1 system. The load (output force) is 100 pounds and the pulling force (input force) is 100 pounds of force (lbf). To move a 100 pound object 10' with a direct pull system, rescuers would have to exert a little more than 100 pounds of force (lbf) and use ten feet of rope in the process.
 - A mechanical advantage system is a system where the pulling (input) force exerted by the rescuers is less than the (output) force on the load. An example would be a 2:1 system. The

load is 100 pounds and the pulling force needed to move the load is approximately 50 pounds of force (lbf) or half the weight of the load.

- c) This calculation does not address the size of pulleys, ropes and friction created by rope making contact with various objects or the number of bends in the rope; it is a theoretical mechanical advantage (TMA).
- d) The actual mechanical advantage (AMA) does factor the friction through the rope, rope stretch and rope rubbing on edges. For the above calculation is approximately 1 7/8:1.
- e) The difference between theoretical and actual mechanical advantage is friction.
- For change of direction effort the pulley is stationary. This does not change the theoretical mechanical advantage.
- g) A gain in mechanical advantage is when the pulley is moving. This changes the mechanical advantage depending upon the use.
- h) If the bitter end of the mechanical advantage system is attached at the load, then the simple system is odd.
- i) If the bitter end of the mechanical advantage system is attached at the anchor, the simple system is even.

Reference: IFSTA Fire Service Search and Rescue manual, 7th Edition, pages 137 through 139.

Reference: High Angle Rescue Techniques, 3rd Edition, pages 278 through 280.

Reference: Delmar Engineering Practical Rope Rescue Systems, pages 242, 243 and 265 through 267.

- 5. Discuss the precautions to be considered when using a mechanical advantage system.
 - a) Rope and auxiliary equipment should be rated for the load being moved.
 - b) The haul line should be pulled in a steady rhythmic fashion.
 - c) No one should stand or work under the load.
 - d) Whenever possible the pull should be downhill allowing gravity to assist the operation.
- 6. Discuss the Rule of Twelve regarding the number of personnel needed to operate a hauling system.

- a) The Rule of Twelve is used whenever a hauling system is used as a tensioning tool for systems like a static highline system.
- b) Its purpose is to reduce and eliminate over tensioning by zealous rescuers and reduce shock load that may cause failure of the system.
- c) The formula divides the mechanical system such as a 2:1, 3:1, 6:1 into twelve, and the resulting answer is the maximum number of rescuers that should be pulling on the hauling system; this reduces the risk of overstressing the system. An example for a 3:1 hauling system would be to divide 3 into 12; the resulting answer indicates that no more than 4 rescuers should be pulling on the hauling system.
- 7. Point out that the pull should be slow and rhythmic. The pull should stop when the rescuers, using a steady pull have reached their maximum exertion capability without having to jerk and pull sporadically to continue the haul.
- 8. Discuss the definition of a simple mechanical advantage system.
 - a) Consist of one rope and one or more pulleys.
 - b) By adding pulleys and/or reeving more sheaves, you can increase the benefit.
 - c) An easy way to calculate the mechanical advantage of a simple system is to count the number of ropes that are supporting the load.
- 9. Discuss the definition of compound mechanical advantage systems.
 - a) A compound mechanical advantage system is the combination of two or more simple mechanical advantage systems working together to multiply the overall capability.
 - b) Creating this type of TMA system allows for an increase in the MA equal to the original system's TMA multiplied by the original system's TMA.
 - c) As a general rule of thumb, when two rescue hauling systems are joined at the input point of the first, the resulting MA is achieved by multiplying the two mechanical advantage systems.

d) There are three common compound systems used in rescue operations: the 4:1, the 6:1, and the 9:1.

Reference: Delmar Engineering Practical Rope Rescue Systems, pages 260 through 265.

- 10. Discuss the definition of a complex mechanical advantage system.
 - a) Complex mechanical advantage systems do not meet the definition of a simple or a compound system; rather, they involve more variables in rigging.
 - b) Complex systems can have pulleys moving toward the load and the anchor at the same time. They have limited practical use in most rescue applications.

Reference: High Angle Rescue Techniques, 3rd Edition, pages 280 through 282. Reference: Delmar Engineering Practical Rope Rescue Systems, pages 255 and 256.

PRESENTATION

ENABLING OBJECTIVE #2

The Technical Rescuer shall correctly identify and describe in writing the function of various types of rope grab systems when incorporated into a mechanical advantage system.

- 1. Discuss the use of rope grab appliances in the construction of mechanical advantage systems.
 - a) They are devices rated for gripping a rope.
 - b) There are many commercial designs available such as Gibbs, Rock Exotica, Petzl and others.
 - c) Rope grab devices with teeth should not be used in hauling systems involving humans.
 - d) The rope grab device should be rated for the load, light duty or general duty.
- 2. Discuss the use of prussik hitches in the construction of a mechanical advantage system.
 - a) Prussik slings for mechanical advantage systems are usually constructed with pre-tied lengths of

53" and 65" and secured using a double fisherman knot.

- b) The prussik sling can be used to create a doublewrap for light duty or a triple-wrap prussik hitch for general duty on a lifeline creating a manmade rope grab system.
- c) For rescue operations prussik hitches, also referred to as friction hitches, are usually used in tandem.
- d) The selection of diameter and number of wraps should be based on the load to be moved and ultimately is the choice of the AHJ.
- Point out that one line of thought used by some instructors is using 6 - 7mm on light duty lifeline for one person loads up to 300 pounds (7/16") and 8mm on general duty rope for rescue loads over 300 pounds (1/2").
- 4. Explain that a pulling prussik hitch seizes the rope and pulls it into motion.
- 5. Explain that a braking prussik hitch seizes the rope and prevents it from moving, also known as a progress capturing device.
 - a) This device can be tandem prussik hitches or rope grab devices rated for the load.
 - b) This device can be rigged to an anchor near the edge or near the primary anchor.
 - c) When possible, the progress capturing device should include a load release hitch.
- 6. Explain that a ratchet prussik hitch allows mechanical advantage pulley systems to be reset repeatedly for multiple pulls.
- 7. Point out that when a shock load potential exists a shock absorbing system should be attached to the load.
- 8. Point out that a belay system should be used for systems supporting a human load.
- 9. Describe the function of the load release hitch.
 - a) A type of hitch constructed using webbing or accessory cord.

- b) It has two purposes. It sustains major loads and when tension is applied it is used to release tension in the system into which it was incorporated.
- c) The load release hitch has some shock absorbing capability.
- d) It can be used in the switching over from a raising system to a lowering system and vice versa.

Reference: High Angle Rescue Techniques, 3rd Edition, pages 193 – 195 and 284 – 287.

PRESENTATION

ENABLING OBJECTIVE #3

The Technical Rescuer, given the appropriate equipment, shall correctly describe and demonstrate rigging various simple mechanical advantage systems with rope grab systems used by the AHJ.

- 1. Describe and demonstrate rigging a static 3:1 Z-Drag mechanical advantage system.
 - a) A static system is used when there is sufficient room to set up the system so the haul can be completed in one pull.
 - b) Secure a figure-eight-on-a-bight knot or other appropriate knot suited for the load into one end of the haul line and secure it to the load.
 - c) Select an anchor point a sufficient distance away from the load to ensure the haul can be completed with one pull.
 - d) Secure the sling pulley and carabiner to the anchor.
 - e) Tie a directional figure-of-eight knot (bight should face the anchor) or a butterfly knot just behind the figure-eight-on-a-bight that is attached to the load.
 - f) Clip a carabiner and pulley into the knot.
 - g) From the load, feed the running end of the rope through the anchor pulley.
 - h) Then the rope should be fed through the load pulley so the shape of the hauling system resembles a "Z" pattern.
 - i) Secure a progress capturing device to the main line at the most appropriate location between the

figure-eight-on-a-bight knot and the anchor.

- 2. Describe and demonstrate rigging a dynamic 3:1 Z-Drag mechanical advantage system.
 - a) A dynamic system is used when there is not sufficient room to set up the system and multiple hauls will be required.
 - b) Secure a figure-eight-on-a-bight knot or other appropriate knot suited for the load, into one end of the haul line and secure it to the load.
 - c) Select an anchor point a sufficient distance away from the load to ensure the haul can be completed with one pull.
 - d) Secure the anchor sling, pulley, and carabiner to the anchor.
 - e) Secure tandem triple-wrap prussik (for rescue load) near the edge and hook a carabiner and pulley to it
 - f) From the load, feed the running end of the rope through the anchor pulley.
 - g) Then the rope should be fed through the load pulley so the shape of the hauling system resembles a "Z" pattern.
 - h) Secure a progress capturing device to the main line at the most appropriate location between the figure-eight-on-a-bight knot and the anchor.

Reference: IFSTA Fire Service Search and Rescue manual, 7th Edition, page 138.

Reference: High Angle Rescue Techniques, 3rd Edition, pages 291 – 292.

- 3. Describe and demonstrate rigging a simple 4:1 mechanical advantage system.
 - a) Secure a figure-eight-on-a-bight knot or other appropriate knot suited for the load into one end of the haul line and secure it to the load.
 - b) Select an anchor point a sufficient distance away from the load. Secure an anchor sling, locking carabiner, and a pulley to the anchor.
 - c) Secure a second locking carabiner and pulley on the load line.
 - d) Secure a second anchor sling, locking carabiner, and pulley next to the first anchor.

- e) From the load, feed the running end of the rope through the first anchor pulley down to the pulley on the load, back up to the second anchor pulley, and through it forming an "M" with the haul line pointing towards the load.
- f) Secure a progress capturing device to the main line at the most appropriate location between the figure-eight-on-a-bight knot and the first anchor.
- 4. Discuss the component parts of a block and tackle system.
 - a) The block is the wooden or metal shell encasing the sheaves.
 - b) The sheaves are the metal roller inside the shell.
 - c) The tackle is the system incorporating 2 blocks and the rope.
- 5. Discuss the precautions to be considered when using a block and tackle system.
 - a) All components of a block and tackle system should be rated for the load.
 - b) The haul line should be pulled in a steady rhythmic fashion.
 - c) No one should stand or work under the load.
 - d) Whenever possible the pull should be downhill allowing gravity to assist the operation.
- 6. Describe and demonstrate the correct method to reeve a 4:1 mechanical advantage system using a block and tackle system using two, double sheave pulleys. When the hauling line (fall) comes out of the stationary block, the mechanical advantage is said to be 4:1. When the hauling line comes out of the moving block, the mechanical advantage is said to be 5:1.
- 7. To calculate the amount of rope needed to lift a load 20' with a 4:1 block and tackle system, multiply the distance to be raised times the number of returns (reeves) through the tackle and 1 haul line, for a total of five, plus add an additional 4' for room for the chock-ablock.
 - a) Example: 20'. Distance to be raised or lowered x
 5 returns. 100' + 4'. Chock-a-block = 104'. Of rope needed.

- 8. To calculate the load capacity of a block and tackle system, multiply the safe working load of the rope x the number of returns x 2/3.
 - a) Example: 600 pound load x 5 returns x 2/3 (.66) = 1,980 pound load capacity.
- Point out that chock-a-block is the term used to describe the minimum distance between the anchor and the tackle at which the mechanical advantage is no longer efficient. Some texts use 4' and some texts use 3' when referencing chock-a-block.
- 10. Discuss the rule that when using laid rope, the correct way to reeve the standing block or anchor pulley should be to place it in the vertical position and the running block or moving pulley should be placed in the horizontal position to prevent twisting and entanglement of the laid rope as it goes under load.
 - This rule need not be applied when using kernmantle rope, and both pulleys may be laid in the horizontal position when reeving a block and tackle system.

Reference: IFSTA Fire Service Search and Rescue manual, 7th Edition, pages 92 and 93.

Reference: High Angle Rescue Technician, 3rd Edition, page 281.

PRESENTATION

ENABLING OBJECTIVE #4

The Technical Rescuer, given the appropriate equipment, shall correctly describe and demonstrate rigging various compound mechanical advantage systems with rope grab systems used by the AHJ.

- 1. Discuss the concept of a compound MA system.
 - A compound system is created by adding or stacking additional mechanical advantage system onto the original system.
 - b) A compound system is based on the engineering principle that a simple machine acting on a simple machine creates a compound machine.
 - c) As an accepted rule of thumb, when joining two hauling systems together at the input point of the

first hauling system, the end result is the TMA obtained by multiplying the two systems together. Example of the above includes: $2:1 \times 2:1 = 4:1$, $2:1 \times 3:1 = 6:1$.

Reference: Delmar, Engineering Practical Rope Rescue Systems, pages 260 – 265.

- 2. Demonstrate constructing a 4:1 compound system using two ropes.
 - a) Tie a figure-eight-on-a-bight knot into one end of the haul line and secure it to the primary anchor.
 - b) Attach a locking carabiner and a pulley at the load point.
 - c) Reeve the haul line through the pulley and then tie a figure-eight-on-a-bight knot at the end of the haul line.
 - d) Using a second rope tie a figure-eight-on-a-bight knot and secure it to the primary anchor or a secondary anchor next to the primary anchor.
 - e) Attach a locking carabiner and pulley into the figure-eight-on-a-bight knot of the first rope, just behind the first pulley.
 - f) Feed the second rope through the second pulley and the haul line should point toward the primary anchor.
 - g) Secure a progress capturing device to the system.
- 3. Demonstrate constructing a 4:1 compound system using one rope.
 - Tie a figure-eight-on-a-bight knot into the middle of a short section of haul line (suggest 50') creating 2 sections of rope and secure it to the primary anchor.
 - b) Attach a locking carabiner and a pulley at the load point.
 - c) Reeve the haul line through the pulley and then tie a figure-eight-on-a-bight knot at the end of the haul line
 - Attach a locking carabiner and pulley into the figure-eight-on-a-bight knot of the first rope, just behind the first pulley.
 - e) Feed the second section of rope through the second pulley and the haul line should point toward the primary anchor.

- f) Secure a progress capturing device to the system.
- 4. Demonstrate constructing a 6:1 compound system.
 - a) Construct a dynamic 3:1 Z-Drag system as previously described.
 - b) Tie a figure-eight-on-a-bight knot at the end of the haul line after it comes out of the traveling pulley.
 - c) Secure a second sling around the primary anchor.
 - d) Tie a figure-eight-on-a-bight knot into the end of a second rope and secure it to the second anchor sling with a locking carabiner.
 - e) Secure a locking carabiner and pulley into the figure-eight-on-a-bight knot that was created on the first rope after it passed through the first traveling pulley.
 - Pass the standing part of the second rope through the second traveling pulley so the haul in the direction of the primary anchor.
 - g) Secure a progress securing device to the system.

Reference: High Angle Rescue Techniques, 3rd Edition, pages 292.

- 5. Discuss the advantages provided by using a piggyback mechanical advantage system.
 - a) The piggy-back system can be pre-rigged with a short section of life line rope and pre-packaged for quick deployment.
 - b) The piggy-back system can be switched from one haul or lift line to another line quickly.
- 6. Demonstrate rigging a piggy-back 3:1 and 4:1 mechanical advantage system using a commercial rescue rated rope grab device.
- 7. Demonstrate rigging a piggy-back 4:1 mechanical advantage system using tandem triple wrap prussik hitches.

APPLICATION

Ideally there will be enough equipment to set up at least four stations where Technical Rescuers can construct the various types of mechanical advantage systems. Have each Technical Rescuer construct a simple 3:1 static and a dynamic Z-Drag, a 4:1 block and tackle, a compound 4:1, and 6:1 mechanical advantage system mechanical advantage system. Have the Technical Rescuer describe how to calculate the ratio of each system and describe the difference between static and dynamic; also have each Technical Rescuer describe or point out the difference between simple, compound, and complex mechanical advantage systems. If possible, have these systems rigged where a weight of approximately 100 pounds can be lifted with each completed system. The instructor should make sure all safety precautions are adhered to including sufficient number of instructors and the use of appropriate PPE.

SUMMARY

This lesson plan addresses simple, compound, and complex mechanical advantage systems. Each system is designed to prepare the Technical Rescuer to meet the needs of low and high angle rescue operations. Being able to safely lift the required load with the equipment and personnel on hand is directly related to the Technical Rescuer's understanding of mechanical advantage system. The Technical Rescuer must understand that the mechanical advantage system is capable of generating tremendous forces that can make the job easier. However, it can also make the job far more dangerous if the limitations of a single component are exceeded. Review the advantages and disadvantages of each of the systems discussed. Verify the fact that each of the Technical Rescuers understands the terminology of static and dynamic, as well as simple, compound, and complex in relation to mechanical advantage system.